

Sustainable conservation of built cultural heritage in a changing environment

Beatriz Menéndez CY Cergy Paris Université

Italian-French Bilateral Cooperation in Heritage Science: "Human-centered approach for cultural heritage in green transition: disciplines talking to each other" Online event Thursday, 10th november 2022

CORE : Sustainable COnservation and REstoration of built cultural heritage Participants: intersectoral, international and multidisciplinary group

Europe

- CY Cergy Paris (France) GEC
- CY (France) HERITAGES
- University of Modena and Reggio Emilia (Italy)
- University Pavia (Italy)
- ISAC-CNR Bologna (Italy)
- DTU Copenhagen (Denmark)
- Institute Geoscience Madrid (Spain)
- GEA Oviedo (Spain)
- REMPART (France)

America

- University Rosario Bogota (Colombia)
- CINVESTAV Merida (Mexico)
- Univ Juarez Autonoma Tabasco (MX)
- University Autonoma Campeche (MX)
- Univ Politech Centro Tabasco (MX)
- Inst Nat Archaeology History Merida

Studied Built Cultural Heritage

- Vexin Français (France) Temperate oceanic climate
- **Patones de Arriva** Madrid area (Spain) Hot-summer and Warm-summer Mediterranean climate and Cold semi-arid (steppe) climate
- **Cremona** (Italy) Humid subtropical climate
- Aeolian Archipelago (Italy) Hot-summer Mediterranean climate
- Chateau de Coucy (France) Temperate oceanic climate
- **Périllos Workcamp** (France) Hot-summer Mediterranean climate
- The use of bricks in **Danish** Built Cultural Heritage Temperate oceanic climate

Studied Built Cultural Heritage

Archaeological cultural heritage in Mexico Chichén Itza (Mexico) Tropical dry savanna climate Oxpemul (Mexico) Tropical dry savanna climate

Studiod Ruilt Cultural

- Vexin Français (France) Temperate
- Patones de Arriva Madrid area (S Mediterranean climate and Cold sem
- **Cremona** (Italy) Humid subtropical (
- Aeolian Archipelago (Italy) Hot-sun
- Chateau de Coucy (France) Temper
- Périllos Workcamp (France) Hot-sı
- The use of bricks in **Danish** Built Culclimate

Studied Built Cultural Heritage

- Vexin Français (France) Temper
- Patones de Arriva Madrid area Mediterranean climate and Cold s
- **Cremona** (Italy) Humid subtropic
- Aeolian Archipelago (Italy) Hot-
- Chateau de Coucy (France) Tem
- Périllos Workcamp (France) Ho
- The use of bricks in **Danish** Built climate

Studied Built Cultural Heritago

- Vexin Français (France) Temperate ocean
- Patones de Arriva Madrid area (Spain) H Mediterranean climate and Cold semi-arid
- Cremona (Italy) Humid subtropical climate
- Aeolian Archipelago (Italy) Hot-summer M
- Chateau de Coucy (France) Temperate oc
- Périllos Workcamp (France) Hot-summer
- The use of bricks in Danish Built Cultural H climate

Studied Ruilt Cultural Herit

- Vexin Français (France) Temperate oceanic cli •
- Patones de Arriva Madrid area (Spain) Hot-si • Mediterranean climate and Cold semi-arid (step
- **Cremona** (Italy) Humid subtropical climate •
- Aeolian Archipelago (Italy) Hot-summer Medite •
- Chateau de Coucy (France) Temperate oceanic •
- Périllos Workcamp (France) Hot-summer Medi •
- The use of bricks in **Danish** Built Cultural Herita climate

Studied Built Cultural Heritag

- Vexin Français (France) Temperate oceanic climate
- Patones de Arriva Madrid area (Spain) Hot-summer Mediterranean climate and Cold semi-arid (steppe) clir
- **Cremona** (Italy) Humid subtropical climate
- Aeolian Archipelago (Italy) Hot-summer Mediterranea
- Chateau de Coucy (France) Temperate oceanic climat
- Périllos Workcamp (France) Hot-summer Mediterran
- The use of bricks in **Danish** Built Cultural Heritage Tem climate

Cristian Distr Cilterial

Vernacular BCH in Europe

- Vexin Français (France) Tempera
- Patones de Arriva Madrid area Mediterranean climate and Cold se
- **Cremona** (Italy) Humid subtropica
- Aeolian Archipelago (Italy) Hot-su
- Chateau de Coucy (France) Temp
- Périllos Workcamp (France) Hot-
- The use of bricks in **Danish** Built Conclimate

Le village abandonné de Périllos.

Studied Built Cultural Heritag

- Vexin Français (France) Temperate oceanic climate
- Patones de Arriva Madrid area (Spain) Hot-summe Mediterranean climate and Cold semi-arid (steppe) cl
- **Cremona** (Italy) Humid subtropical climate
- Aeolian Archipelago (Italy) Hot-summer Mediterran
- Chateau de Coucy (France) Temperate oceanic clim
- Périllos Workcamp (France) Hot-summer Mediterra
- The use of bricks in Danish Built Cultural Heritage 1 climate

Studied Built Cultura Heritage

Archaeological cultural heritage in Mexico Chichén Itza (Mexico) Tropical dry savanna climate

Oxpemul (Mexico) Tropical dry savanna climate

Studied Built Cultural

Her

Archaeological cultural heritage in Mexico Chichén Itza (Mexico) Tropical dry savanna cli Oxpemul (Mexico) Tropical dry savanna climat

Formulated mortars

#	Mortar	NHI5	NH13.5	CL90	Sand D	Sand F	Sand S	Sand C	G	Р	R	в
1	HFD	20			60	20						
2	HSD	20				15	65					
3	HS	20					80					
4	HB	20										80
5	HCSR	30					45	25			*	
6	HCS	30					45	25				
7	HSG	30					60		10			
8	HSP	30					68			2		
9	HC	30						70				
10	HCSGB	30					25	25	10			10
11	AS			20			80					
12	AHCS	15		15			35	35				
13	ACSGB			30			25	25	10			10
14	OAC *			40				60				
15	AC			40				60				
16	AS2			40			60					
17	H3.5CS		30				7	63				
18	H3.5CS2		30				21	49				
19	H3.5CS3		30				35	35				
20	H3.5CS4		30				49	21				
21	H3.5C85		30				63	7				
22	H3.5CSG		30				30	30	10			
23	H3.5CSB		30				30	30				10
24	H3.5CSGB		30				25	25	10			10

H Hydraulic lime
A Aerial lime
C Calcareous sand
S Siliceous sad
F calcareous sand
D Fine siliceous sand
O Lime paste (90 days)

G Grinded glassB ChamotteP ConesR Resin from cones

100% 75% 50% 25% 0% ACSGB -H3.5CSG PCCSG ACSG PCCS H5CS H5CSG H5CSGB PCCSGB ACS H3.5CS H3.5CSGB -25% Operation Disposal Transport, Mixing and Preparation ≈ 60 % Binder Production

Sand Production

GWP: Global Warming Potential

Natural and fossil resources depletion

Conclusions

- Energy consumption and polluting emissions through the life cycle of mortars have been determined
- The sustainability of the formulated mortars has been estimated considering physicochemical properties, durability, environment impact and economy
- The properties and durability of mortars can be improved using recycled materials, admixtures or additives
- A selection method that can be applied anywhere and to any construction material by modifying the selected properties has been set up.

a hew research group is the construction to propose ressources - efficient sollutions for traditional buildings renovation

Thanks for your attention!

Beatriz Menéndez CY Cergy Paris University

Beatriz,menendez@cyu.fr +33 1 34 25 73 62 www.cyu.fr

